FOUNDATIONS OF ARTERIAL BLOOD GAS INTERPRETATION

Al Heuer, PhD, MBA, RRT Professor, Rutgers University Co-Owner A & T Lectures

Learning Objectives:

- Understand Indications, Complications and Hazards
- Review Normal ABG Values
- Examine Steps in Interpreting Results
- Review Common ABG Abnormalities
- Perform and Review Some Actual ABG Interpretations
- Examine Some Critical Thinking Questions
- Provide Some Additional References

Indications for ABGs (Arterial Blood Gases)

- Determine adequacy of ventilation
 - Disorders: Neuromuscular, COPD, "Code"
- Determine adequacy of oxygenation
 - Disorders: ARDS, Pul. Emboli, Pneumonia
- Determine metabolic status
 - Disorders: Kidney Failure, Sepsis, Keto-acidosis, S/P "Code"
- Assess response to therapy or the severity and progression of disease

Contraindications for Arterial Puncture

- Negative Allen's test
- Should not be performed through a lesion or distal to a surgical shunt
- A coagulopathy or medium- to high-dose anticoagulation therapy
- Opened burns
- Relative contraindications:
 - Minor change in therapy whose impact can be monitored via other means.
 - Serial ABG's in the absence of an arterial line.
 - Lack of a valid indication overly cautious (resident) physician.

Precautions/Complications of Arterial Punctures

- Arteriospasm
- Air or clotted blood emboli
- Anaphylaxis from local anesthetic
- Patient or sampler contamination
- Hematoma
- Hemorrhage
- Trauma to the vessel
- Arterial occlusion
- Pain
- Nerve damage

Pre-Analytic ABG Errors

Error	Effect(s)	How to Recognize	How to Avoid
Air in Sample	lowers PCO2 raises pH raises low PO2 lowers high PO2	-visible bubbles or froth -low PCO2 inconsistent with patient status	-Discard frothy samples -Fully expel bubbles -Mix only after air expelled - Cap syringe quickly
Venous Admixture	raises PCO2 lowers pH can greatly lower PO2	-failure of syringe to fill by pulsations -patient has no symptoms of hypoxemia	-Avoid brachial/femoral sites -Do not aspirate sample -Use short-bevel needles -Avoid artery 'overshoot' -Cross-check with SpO2
Metabolic Effects	raises PCO2 lowers pH lowers PO2	-Excessive time lag since sample collection -Values inconsistent with patient status	-Analyze quickly -Place sample in ice slush

Normal Values

- Normal Values:
 - pH = 7.35 7.45
 - pCO2 = 35 45 torr
 - pO2 = 80 100 torr
 - HCO3 = 22 26 mEq
 - BE = -2 + 2
 - SO2 (calculated via PO2-above) 95-100%
- Typical Representation in Chart (Normal ABG)
 - 7.40 / 41 / 92 / 23 / 1

How to Interpret ABG

- Evaluate (In this Order):
- Acid-Base Balance
 - 1st pH: Normal, Acidotic, Alkalotic
 - 2nd PCO2: Normal, Acidotic, Alkalotic
 - 3rd HCO3 & BE: Normal, Acidotic, Alkalotic

- Oxygenation
 - PO2, Hb Sat: Normal, Hypoxemic, Hyperoxia

Assessment of pH

- Refers to hydrogen ion (H+) levels which indicates if the patient is acidotic or alkalotic, indicated by the pH.
- Normal Value: 7.35 7.45
- Less than 7.35 = Acidosis
 - Respiratory if PCO2 > 45 torr
 - Metabolic if HCO3 < 22 mEq
- Greater than 7.45 = Alkalosis
 - Respiratory if PCO2 < 35 torr
 - Metabolic if HCO3 > 26 mEq

Assessment of PCO2

- Normal Value: 35 45 torr
- Abnormalities
 - PCO2 > 45 torr (CO2 retention/hypoventilation/acidotic)
 - PCO2 < 35 torr (hyperventilation/alkalotic)
- pH can be normal with high PCO2 if kidneys compensate by retaining HCO3 (> 26 mEq)
 - Example: pH 7.35; PCO2 58; HCO3=32
 - Interpretation: fully compensated respiratory acidosis

RESPIRATORY ACIDOSIS-AKA Hypercapnia

Caused by increased CO2 levels which is then converted to an acid.

Examples:

Hypoventilation

Presence of sedatives/sedation/opiates

Central Nervous System (CNS) depression

Pneumonia

Pulmonary edema

Asthma

latrogenic causes--

- Setting minute ventilation or tidal volume too low
- Failure to Initiate Appropriate Therapy-NIPPV/BiPAP

Respiratory Alkalosis: AKA Hypocapnia

Definition: a decreased amount of carbon dioxide in the blood.

Potential causes:

Patient Hyperventilation - due to pain, fever, anxiety, brain injury.

latrogenic Causes: Inappropriate vent settings e.g. excessive tidal volume (VT) or respiratory rate (f) during mechanical ventilation.

A Word about Capnography

- Capnography- Analysis of waveform (and often numeric value) of exhaled CO2
 - Capnometry- Measuring the numeric value of exhaled CO2
- Can be used as a surrogate for PCO2
- Normal values
 - Normal EtCO2 is 30-43mmHg
 - Normal PaCO2 is 35-45mmHg

Assessment of Metabolic Status (Bicarbonate/HCO3-)

- Normal Value: 22-26 meq
 - Metabolic Acidosis: If HCO3 < 22 mEq and not a compensatory mechanism
 - Metabolic Alkalosis: If HCO3 > 26 mEq and not a compensatory mechanism
- Base Excess (BE) is a function of HCO3
- Normal BE + 2 to -2 if HCO3 normal

Causes of imbalance METABOLIC ACIDOSIS

Caused by either an increase in acids and or a loss of base (HCO3).

Example:

Diarrhea (loss of base)

Renal failure (unable to excrete acids or H+)

Lactic acidosis (increase in acids)

Ketoacidosis (increase in acids)

Causes of imbalance

METABOLIC ALKOLOSIS

Can be caused by an increase in HCO3 or loss of metabolic acids.

Examples:

Prolonged vomiting (acid loss)

GI suctioning (acid loss)

Hypokalemia (excreted to maintain electrolyte balance)

Compensation

Acid Base Disorder	Initial Change	Compensatory Response
Respiratory Acidosis	↑ PCO2	↑HCO3-
Respiratory Alkalosis	↓ PCO2	↓ HCO3-
Metabolic Acidosis	↓ HCO3-	↓ PCO2
Metabolic Alkalosis	↑ HCO3-	↑ PCO2

Compensation is Not Absolute

- Can be:
 - Uncompensated
 - Partially Compensated
 - Fully Compensated
- Uncompensated:
 - pH is always abnormal with:
 - Elevated PCO2 with a normal HCO3 scenario
 - AKA uncompensated respiratory acidosis
 - Decreased HCO3 and a normal PCO2
 - AKA uncompensated metabolic acidosis
 - Similar phenomenon for alkalosis

Partial Compensation

- Partially Compensated
 - pH is always abnormal with either:
 - Primary disturbance is an abnormal PCO2
 - HCO3 is also abnormal but only to compensate for the primary abnormality.
 - Partially Compensated Respiratory Acidosis: pH=7.30, PCO2=63, HCO3 31 (e.g., COPD exacerbation, early permissive hypercapnea)
 - Or, Partially Compensated Respiratory Alkalosis: pH-7.51, PCO2=27, HCO3= 20 (e.g., inadequately treated pain or anxiety)

Or

- Primary disturbance is an abnormal HCO3
 - PCO2 is also abnormal but only to compensate for the primary abnormality.
 - Partially Compensated Metabolic Acidosis: pH=7.30, HCO3 15, PCO2=25 (e.g., DKA, Renal insuff.)
 - Or, Partially Compensated Metabolic Alkalosis: pH-7.51, HCO3= 30, PCO2=49 (e.g., electrolyte disturbance)

Full Compensation

- Fully Compensated
 - pH is always Normal with either:
 - Primary disturbance is an abnormal PCO2 where HCO3 is also abnormal but only to compensate for the primary abnormality.
 - Fully compensated Respiratory Acidosis: pH=7.36, PCO2=53, HCO3 31 (e.g., COPD Steady State, permissive hypercapnea)
 - Or, Fully Compensated Respiratory Alkalosis: pH-7.44, PCO2=30, HCO3= 20

Or

- Primary disturbance is an abnormal HCO3 where PCO2 is also abnormal but only to compensate for the primary abnormality.
 - Fully Compensated Metabolic Acidosis: pH=7.36, HCO3 18, PCO2=30
 - Or, *Fully Compensated Metabolic Alkalosis*: pH-7.45, HCO3= 30, PCO2=49

Assessment of Oxygenation: Pa02 AKA P02

- Normal Value PO2 = 80-100 torr
- Hypoxemia: If PO2 < 75-80 torr –
 - Mild: PO2 65-79 torr on room air
 - Moderate: PO2 50-64 torr
 - Severe: PO2 < 50 torr
- Hyperoxia: If PO2 > 100-120 torr
- Example:
 - pH 7.30; PCO2 55; HCO3 24; BE +1; PO2 58
 - Interpretation: uncompensated respiratory acidosis with moderate hypoxemia

What is Pa02?

- The amount of oxygen dissolved in the plasma, not what is bound to HgB.
- The majority of oxygen is bound to HgB and expressed as SaO2
 - Approximated via SPO2 (pulse oximetry).
- So what's the big deal about PaO2?!
- Because, there is a nicely defined relationship between PaO2 (dissolved in Plasma) and SaO2 (bound to HgB)
 - Oxyhemoglobin Disassociation

Oxygen Dissociation Curve

O₂ binding with hemoglobin

Amount of O_2 in blood
Dissolved O_2 negligible
Most O_2 on hemoglobin $PO_2 > 100 \text{ mmHg}$ saturated

Putting it Together

Example 1: Assessment of Oxygenation

- pH 7.30; PCO2 55; HCO3 24; BE +1; PO2 58
- Interpretation: uncompensated respiratory acidosis with moderate hypoxemia
- Why?

Example 2: Assessment of PCO2

pH 7.35; PCO2 58; HCO3=32

Interpretation: fully compensated respiratory acidosis

Why?

Example 3: Metabolic Status (Bicarbonate/HCO3-)

• pH 7.25;PCO2 40;HCO3 16; BE -8

Interpretation: uncompensated metabolic acidosis

Why?

Add'l ABG Interpretation Examples

- pH 7.45; PCO2 39; HCO3 24; BE 0; PO2 88
 - Interpretation: normal ventilation and oxygenation
- pH 7.28; PCO2 58; HCO3 26; BE +2; PO2 65
 - Interpret: uncomp. resp. acidosis w/ mild hypoxemia
- pH 7.52; PCO2 28; HCO3 24; BE 1; PO2 53
 - Interpret: uncomp. respiratory alkalosis w/ moderate hypoxemia
- pH 7.22; PCO2 36; HCO3 17; BE -6; PO2 98
 - Interpret: uncomp. metabolic acidosis w/ normal oxygenation

- A 70 Kg (PBW), 35 YO male was intubated and placed on a ventilator one hour ago with the following settings:
 - AC-VT=480, RR=16, FIO2=60% and +5 PEEP.
- An ABG results are:
 - pH=7.32-PCO2=52-PO2=62,HCO3=26, BE=+1.
- What is the ABG interpretation?
- What vent setting changes would you recommend and why?

- A 50 Kg female admitted for a COPD exacerbation was intubated and placed on a ventilator one hour ago with the following settings:
 - AC-VT=550, RR=16, FIO2=50% and +5 PEEP.
- An ABG results are:
 - pH=7.50 PCO2=43 PO2=70 HCO3=32 BE=+7.
- What is the ABG interpretation?
- What vent setting changes would you recommend and why?

- The COPD patient from Case 2 now has a resolving pneumonia is weaning well on +6 PSV with a RSBI of 72. The morning ABG shows the following:
 - pH 7.41, Paco₂ 51, Pao₂ 70, HCO₃ 30, BE
 0, on Fio₂ of 0.35.
- What is the ABG interpretation?
- What would you recommend regarding weaning and extubation and why?

- A 45 YO male neuromuscular patient is receiving continuous BiPAP with settings of 10/5 and 60% FIO2.
- The ABG on these settings is: pH 7.30 PCO2 55- PO2 55- HCO3 30 BE +5.
- What is the ABG interpretation?
- What would you recommend regarding BiPAP settings changes and why?

- A nurse, respiratory therapist and PA respond to an RRT call in step-down. You immediately note that the patient appears obtunded, diaphoretic, cyanotic, RR = 40, HR = 155, pulse is thready and BP=80/42. The resident physician orders a NRB and a stat ABG.
- What is additional or alternative recommendations do you have?

- It is the winter and a female patient is admitted to the ICU with suspected CO poisoning due to a furnace malfunction. Her cheeks are flushed and she has difficulty focusing and answering your questions. She is on a high-flow system with an Fio, of 100%. The pulse oximeter, reads 99%. No ABG have been drawn as yet, and the resident asks if you think one is needed.
- What should be your response, and why?

Take Home Messages

- When indicated, ABG's can be an extremely useful diagnostic tool.
- However, they should be done judiciously
 - They are invasive and have potential hazards.
 - They are resource intensive.
 - They can be supplemented with less/non-invasive modalities (ETCO2, SPO2).
- Becoming proficient in interpreting ABG's takes time and effort.
- There are many resources available, (including your local RT), so use them!!!

Selected Resources

- Kacmarek, RM, Stoller, J & Heuer AJ, Egan's Fundamentals of Respiratory Care, ed 12th ed, 2021.
- ▶ Heuer, AJ, Clinical Assessment in Respiratory Care, ed 8, 2022.
- Castro D, Patil SM, Keenaghan M: Arterial Blood Gas. Sep 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.

