Performing and Interpreting ECG's

Al Heuer, PhD, MBA, RRT-ACCS, RPFT, FAARC Professor, Rutgers School of Professions Co-Owner- A & T Lectures

Learning Objectives

Review the basic anatomy of the heart
Describe the cardiac conducting system
Discuss the indications for EKGs
Summarize the basics of how to analyze an EKG rhythm
Review common rhythms, causes and treatment
Furnish additional resources

Conducting Pathway of the Heart

1. Superior vena cava

3. Right atrium

5. Coronary sinus

7. Tricuspid valve 8. Right ventricle

11. Left atrium Mitral valve

Left ventricle

6. Inferior vena cava

9. Interatrial septum

000

(Redrawn from Huszar RH: Basic dysrhythmias: interpretation and management, ed 2, St Louis, 1994, Mosby.)

Conduction (Cont.)

ECG/EKG = Graphical Depiction of Cardiac Cycle

Indications for EKGs/ECGs

<u>Chief complains:</u>

- Chest pain
- Dyspnea on exertion
- Orthopnea
- Pedal edema
- Fainting spells
- Palpitations

Past medical hx:

Hx of heart diseaseHx of cardiac surgery

<u>Physical examination</u>

- Unexplained tachycardia at rest
- Hypotension
- Decreased capillary refill
- Abnormal heart sounds and murmurs
- Cool, edematous, cyanotic extremities
- Diaphoresis
- (+) JVD

Limitations of ECG/EKGs

- Does <u>not</u> measure the pumping ability of the heart
- Does <u>not</u> show abnormalities on cardiac structure
- Does <u>not</u> have predictive value
- Artifact
- Operator technique
- Lead placement limitations
- Technical issues

ECG/EKG Analysis

Lethal rhythm requiring immediate attention? Is the rate normal, slow or fast? Is the rhythm regular? ■ Is there a "P" Wave? • What is the PR Interval? What is the QRS configuration? Are there other characteristics? ST depression Axis deviation What is the final interpretation? What is the recommended action/treatment

Gridlines = Time Interval

000

Estimating Rate - If Irregular

6-second technique (irregular rhythms)
 Select a 6 sec interval strip (30 large boxes)
 Count the # of QRS complexes
 Multiply by 10

• e.g. 7 'QRSs' x $10 = \sim 70$ beats/min

Estimating Rate - If Regular

Pick a complex that falls on a heavy line
 Then estimate the rate by counting heavy boxes
 Using 300, 150, 100, 75, 60, 50, 40, 30

Calculating HR

Count the number of large boxes between two beats.

Divide this number into 300.

Examples:

2 large boxes: 300/2 = 150
4 large boxes : 300/4 = 75
6 large boxes : 300/6 = 50

Normal EKG Rhythm & Values

Copyright © 2003. Elsevier Inc. All Rights Reserved.

Normal Values (Adult)
 Rate = 60-100
 P-R Interval = 0.12- 0.20 sec.
 QRS < 0.12 sec.

Arrhythmia Etiology

Disturbance in *automaticity*
 Pacemaker speeds up
 New pacemaker takes over

 Conduction problem: Slowing or blockage of conduction or electrical pulse
 Combination of these two

Sinus Bradycardia

• Why Sinus Bradycardia?

- Regular
- Rate < 60
- 1 P for every QRS
- PRI between .12 & .20 seconds
- QRS width = 0.12 seconds

Common Causes?

- MI
- Vagal stimulation
- Increased ICP
- Normal athletic heart???

Treatment?

- Nothing, if patient asymptomatic
- Atropine
- Pacing

Sinus Tachycardia

Copyright © 2005 by Mosby, Inc. All rights reserved.

- HR between 100 & 150
- Rhythm and intervals OK
- Common Causes?
 - Hypovolemia
 - Fever
 - Pain
 - Anxiety
 - Activity
 - Catacholamines
- Treatment?
 - Treat underlying cause

Supraventricular Tachycardia (SVT)

Why?

- Very Rapid Rate (150-250)
- P wave may be buried in preceding T wave
- PRI difficult to measure but may be between 0.12 and 0.20 secs.

Common Causes?

- Ischemic heart disease
- Excessive catacholamines (e.g., epinephrine)

Treatment?

- Beta Blockers
- Calcium Channel Blockers
- Adenosine (AV blockade)

Atrial Fibrillation

Why?

- No identifiable p-waves
- Chaotic irregular baseline
- QRS distinguishable but irregular & < .12 secs

Common Cause

Enlarged atrium (due to CHF or mitral stenosis)

Clinical significance:

- Threat of emboli
- Decreased cardiac output
 - If rapid rate = less ventricular filling
 - Loss of "Atrial kick"
- Treatment?
 - Beta Blockers (Lopressor)
 - Calcium Channel Blockers (Cardizem)
 - Digoxin
 - Cardioversion

Atrial Flutter

- P waves not present with "Sawtooth" baseline
- PRI not measurable
- QRS less than 0.12 seconds
- Common causes?
 - Ischemic heart disease
 - Rheumatic heart disease
- Treatment?
 - Beta Blockers (Lopressor)
 - Calcium Channel Blockers (Cardizem)
 - Digoxin
 - Cardioversion

Premature Ventricular Contraction (PVC)

- Premature beat makes rhythm appear irregular
- PVC is not preceded by a P-wave
- PRI is not measurable
- Common Causes?
 - Hypokalemia
 - MI or ischemia
 - Hypoxemia
 - Hypovolemia
- Treatment?
 - Treat underlying cause
 - Beta blockers
 - Antiarrhythmic drugs (Amiodarone or Lidocaine)

Ventricular Tachycardia

Why?

- Rate generally between 100 & 200
- P-waves not present
- PRI not measurable
- QRS wide and bizarre, width > 0.12 seconds

Common Causes?

Similar to PVCs

Treatment?

- If pulse & stable: Similar antiarrhythmic drugs as PVCs
- If pulseless, then immediately begin CPR and rapid defibrillation

Ventricular Fibrillation

- Chaotic rhythm
- HR can not be determined
- P-waves, PRI and QRS not discernable
- Causes?
 - MI or ischemia
 - Acidosis
 - Hypothermia
 - Hypoxemia
- Treatment = CAB-D's of ACLS, including immediate defibrillation

Causes:

- Electrolyte disturbances
- Pneumothorax
- Drug overdose
- Hypoxemia
- Post MI

Treatment =

- Not shockable
- Immediate CPR, unless a valid DNR
- Identify and treat underlying cause
- Pacing
- Basic troubleshooting.

Pulseless Electrical Activity (PEA): Electrical Conduction without Mechanical Activity of the Heart. Most common causes are as follows:

<u>5 H's:</u>

Hypovolemia,
Hypoxia,
H+(acidosis),
Hyper/hypokalemia
Hypothermia

■ <u>5 T′s:</u>

- Tamponade (cardiac),
- Tension pneumo,
- Thrombosis (coronary),
- Thrombosis (pulmonary)
 Tablets (OD)

First Degree Heart Block

- Regular rhythm
- Rate 60-100
- QRS < 0.12 secs
- PRI Interval > 0.20 secs
- Causes?
 - Physiologic interference with conduction pathway
 - Digoxin toxicity
- Treatment?
 - May be benign
 - Treat underlying cause
 - Stop digoxin, if levels are high

2nd Degree Heart Block-Type I (Wenckebach)

Copyright © 2005 by Mosby, Inc. All rights reserved

Why?

Irregular rhythm

Ventricular rate < atrial rate</p>

Progressive prolongation of PRI interval until a QRS is dropped Causes?

- Mi or ischemia
- Excessive beta blockers
- Digoxin toxicity
- Treatment?
 - Atropine if symptomatic heart rate < 60</p>
 - Monitor

Second Degree Heart Block-Type II

- Regular rhythm
- Ventricular rate < atrial rate
- QRS does not occur with every p-wave (some QRS's are dropped)
- More p- waves than QRS
- Causes?
 - MI or ischemia
 - Excessive beta blockers
 - Digoxin toxicity
- Treatment?
 - Atropine if symptomatic heart rate < 60
 - Pacemaker

Third Degree Heart Block

- Independent atrial (P wave) and ventricular activity.
- The atrial rate is always faster than the ventricular rate.
- HR often < 40</p>
- PRI not measurable
- QRS may be > 0.12 seconds
- Causes?
 - MI or ischemia
 - Digoxin toxicity
- Treatment?
 - Atropine
 - Pacemaker

- Ectopic foci takes over as pace maker for ventricles
- No "P" waves
- Wide QRS (> 0.12 secs)
- Rate 30-40, unless accelerated
- Common causes?
 - ⊔ MI
- Treatment?
 - Pacing
 - Atropine

Other EKG Abnormalities: ST Segment Elevation & Depression

00

ST Elevation with a PVC

Copyright © 2005 by Mosby, Inc. All rights reserved.

Cause: Acute MI
 Treatment:

 TPA ("clot busters")
 Vasodilators
 Revascularization

S-T Segment Depression

Cause: Myocardial Ischemia
 Treatment:

 Vasodilators
 Oxygen
 Revascularization

Identifying Axis Deviation		
	Quick A	kis Determination
	Lead	Axis Interpretation
	I is Positive II is Positive	Normal
	I is Positive II is Negative	Left Axis deviation
	I is Negative II is Positive	Right Axis Deviation
	I is Negative II is Negative	Extreme Right axis Deviation

Also: With Right Axis Deviation, lead 3 will positive, but taller than lead II.

000

Causes of Axis Deviation:

Right Axis Deviation Right ventricular hypertrophy COPD Acute PE Infants (normal) Bi-ventricular hypertrophy

Left Axis Deviation Left ventricular hypertrophy Abdominal obesity Ascites or large abdominal tumors Third trimester pregnancy

Take Home Messages Decide What it is you Need/Want to know about EKGs/ECGs Identify resources Texts Manuals Actual EKG strips Review and reinforce Obtain and maintain ACLS Know thy limitations

and indiana a standard a standard

Additional Resources

- Kacmarek, Stoller, & Heuer, Egan's Fundamentals of Respiratory Care, ed 12th ed, 2021.
- Heuer A: Clinical Assessment in Respiratory Care, ed 9, Elsevier, 2021.
- Thaler MS: The only EKG book You'll ever need, ed 8, Philadelphia, Lippincott, Williams & Wilkins. 2018.
- www.ecglibrary.com

