# Spontaneous Breathing Trials (SBTs) and Ventilator Weaning

Al Heuer, PhD, MBA, RRT, RPFT, FAARC Professor-Rutgers University Co-Owner, A & T Lectures



#### Learning Objectives

Learning Ctrl

- Review key terminology.
- Emphasize the importance of collaboration.
- Summarize related research.
- Describe key points of guidelines and evidence related to SBT & weaning.
- Review *Inclusion* and *Exclusion* criteria.
- Summarize how patients should be prepared & optimized.
- Review and debrief some cases.
- Provide additional resources.



#### **Key Terminology**

- Spontaneous Breathing Trial (SBT): Simulate spontaneous breathing for patients with artificial A/Ws.
  - PSV set to overcome resistance
  - Use Tube-Compensation Mode
  - 30 120 minutes
- Weaning Parameters: Metrics used to determine readiness to wean and extubate.
  - Negative Insp. Force (NIF): patients ability to suck-in
    - S/B at least -20 to -25 cm H2O
  - Vital Capacity (VC): deep breath in followed by a compete exhalation.
    - S/B a min. 15 mls/ kg or approx. 1.0 liter
- Sedation Holiday/Vacation: Reduce sedation (often in the AM) to assess ability to wean, follow commands, etc.
- Rapid Shallow Breathing Index (RSBI):
  - Spon. RR / VT in liters
  - $\circ$  S/B < 105



#### Key Terminology (cont.)



- Diaphragmatic Fatigue Imposing excessive WOB while weaning resulting in fatigue.
  - Often takes 24 hrs or more to recover.
- Diaphragmatic Atrophy- Weakening of respiratory muscles due to lack of use via weaning.
- Alveolar De-recruitment- May occur when a patient with an artificial A/W is breathing at low tidal volumes and/or low PEEP.
- Recruitment Maneuvers (RMs) Using short periods of high PEEP (30 cms for 30 seconds) or other "Open Lung" strategies to treat/prevent atelectasis.
  - Especially important for those weaning via trach collar.
  - Should be used cautiously for hemodynamically unstable patients.
- Wean Per Physician Order— Weaning a patient outside of a designated weaning protocol. (e.g., 4 hrs PSV/ 4 hrs on AC).



### Predictors of Successful Weaning

- Kallet, Zhuo, Yip, et al 2018. Cochrane Systematic Rev.
  - Findings: SBT's combined with conservative sedation practices were associated with both reduced ventilator days and ICU LOS.
- Burns, Lellouche, Nisenbaum, (2014).
  - Findings: Automated Weaning: Weaning with SmartCare™ significantly decreased weaning time, ventilator days and ICU stay.
- ▶ Baptistella, Sarmento, da Silva (2018) Systematic Review:
  - Findings: RSBI was the most frequently studied and an important measurement tool in deciding whether to wean/extubate a patient.
- Kutchak, Rieder, Victorino, (2017)
  - Findings: Inability to follow commands (hand grasping) independently
     predict extubation failure in critically ill neurological patients.



#### Weaning Protocol (excerpts)

- ▶ The patient should be assessed daily for *Readiness to Wean*.
  - SBT with PSV set to overcome resistance: Raw = (Peak AW Pres Plateau) / Flow in L/sec
  - 30 120 minutes

#### Criteria

- 1. Ve = 5–12 lpm
- 2. Spont VT 5 ml/kg of ideal body weight (IBW): ex. 70 kg IBW X 5 = 350 mls VT
- 3. RR < 35
- 4. HR< 140</li>
- 5. SpO2 >90%
- 6. Rapid Shallow Breathing Index (RSBI) < 105</li>
- Extubation Criteria (in addition to above)
  - $\circ$  1. NIF > -20
  - 2. Deliberate Cuff Leak > 110 ml



### Spontaneous Breathing Trial (SBT) Example





#### "Optimizing" to Facilitate Weaning

- Sedation: Lighten and consider switching to "kinder" form of sedation e.g., Precedex
- Fluid balance
- Proper Nutrition (macro and micro nutrients).
- Permit adequate recovery time from prior failed weaning attempts. (min 24 hours of rest on AC).
- Adjunctive Respiratory Care: Bronchodilators, bronchial hygiene, sx'ing
- Airway optimization: Mucous shavers.
- Adequate staffing/resources.



#### Endotracheal Tube (ETT) Mucus Shavers



- Evidence has shown that biofilm begins building up in ETT lumen within 24 hours after placement.
- The biofilm reduces interior lumen and contains harmful microbes.
- Pinciroli, et al (2016)
  - Findings: The endOclear mucus shaving device is safe and can prevent ETT luminal occlusion.
- Bardes, et al (2017)
  - Findings: Comparison of the endOclear® group and controls demonstrated a trend toward a higher pneumonia rate in the former. Additionally, the device achieved very small, clinically insignificant, changes in ventilator settings, and no difference was seen in Vent Days.
- Scott, et al (2017)

Findings: ETT scraping can reduce AW resistance but did <u>not</u> impact SBT success.

### Categories of Patients in Relation to Weanability

- ▶ 1. Quick-Wean=>Extubate Wake them up, assess and extubate.
  - e.g., patients being recovered from OR in ICU
- 2. Delayed Quick-Wean Slow to clear sedation...No Spon. Breaths in the morning...Re-Assess/SBT/Wean? in the afternoon.
  - e.g., post complex surgery
- 3. Weaning but extubation contraindicated.
  - e.g. diaphragmatic atrophy due to extended MV, lack of optimization.
- 4. Marginal extubation candidate but trach/PEG are immanent.
  - E.g., Repeated resp. failure-Extubate to BiPAP or HFNC.
- 5. No Wean--No Reassessment—Patients who should not be weaned nor reassessed the same day.
  - e.g., respiratory failure, sepsis, hemodynamic issues, alcohol W/D



### Contraindications to Weaning and SBT

- Inadequate Oxygenation and Spontaneous Ventilation
  - PEEP > 10 cm H2O
  - RSBI > 100–105
- Unstable Clinical Status
  - Non-reversal of reason for intubation
  - Hemodynamic instability
  - Significant anemia and/or abnormal blood chemistry
  - Sepsis
  - Head (or other) trauma
- Pharmacologic paralysis
- Immanent major surgery



### Many Reasons Why Patients Tolerate Weaning but Not Extubation:

- Trauma patients who are stabilized but scheduled for surgery immanently.
- Patients on MV for extended time periods...with diaphragmatic atrophy.
- Patient unable to protect airway but with favorable RSBI.
  - e.g. vocal cord paralysis, status post stroke.
- Patient with insufficient or absent ETT cuff leak.
- Neuromuscular patients with marginal weaning parameters.
- Supportive Care Issues: Marginal fluid balance, nutritional concerns...



### Patients Who Fail AM SBT and Whose PM SBT is *Not* Warranted

- General: Pt. recently intubated (main cause for intubation not resolved)
- Specific Examples:
  - Persistent Respiratory Failure:
    - Oxygenation Resp. Failure": Pt.s requiring high oxygenation settings, FIO2>60%, Peep> 12.
    - Ventilatory Respiratory Failure: RSBI > 105
  - Poor Acid-base status critical or not improving (pH, 7.25)
  - Hemodynamic instability (low BP, unstable HR, arrhythmias)
  - Significant anemia and/or abnormal blood chemistry
  - Intentional heavy sedation (alcohol/drug withdrawals or seizure protocols)
  - Pharmacologically paralyzed or recently coming of the paralytics.

#### **Enhancing Extubation Success**

- Pre Extubation Assessment
  - Adequate oxygenation and ventilation
  - Ability to Protect airway
  - No absolute contraindications
    - Poor weaning parameters
    - Inadequate cuff leak
    - Poor clinical status (CBC's, fever, CXR, excessive secretions, etc)
    - Can't follow commands nor protect airway
- Pre-Extubation Optimization
  - Reversal of clinical reason for original intubation and mech. vent.
  - Fluid balance
  - Nutrition
- Post Extubation Augmentation
  - Extubate to HFNC
    - Marginal oxygenation
  - Extubate to BiPAP/NIPPV
    - Marginal ventilation



#### High-Flow Nasal Cannula (HFNC)

#### Some Evidence:

- Ni, Lou, Yu, BMC Pul. Med (2017).
  - Findings: After extubation, HFNC is a reliable alternative of NIPPV to reduce rate of reintubation compared with conventional O2 therapy.
- Dhillon NK, Smith EJT, Ko A, J Surg. Res (2017)
  - Findings: Ventilated patients at risk for recurrent respiratory failure have reduced reintubation rates when extubated to HFNC.



### Non-invasive Positive Pressure Ventilation

- Zhu, Wang, Liu, Jia & Jia, Chim Med J (2013)
  - Findings: NIPPV can reduce the need of reintubation and improve clinical outcome as compared with invasive ventilation.
- Bhatti, Ramdass, Cury, et al, Clin Respir J.
  - Findings: Clinician dependent factors linked to NIPPV failure.
  - Inappropriate utilization of NIPPV in respiratory failure is associated with higher mortality.



### Case 1 – Interprofessional Collaboration to Get it Started

- ▶ 47 YO ♂ post trauma patient with multiple orthopedic injuries is intubated and ventilated on AC mode. All anticipated surgeries have been completed and the patient is now clinically stable. An attempt at a SBT is not successful because the patient is not initiating breaths over the set rate apparently due to heavy sedation. The physicians are not in the unit.
- What steps are the appropriate next steps for the RT and RN?



#### Case 2- Wean, Don't Extubate

- ▶ A 39 YO ♀ post-head trauma patient is recovering from her injuries and during a sedation holiday and SBT. She is now initiating 20 breaths/min at a VT of 330. Her overall clinical status is stable, however she is unable to follow commands.
- What is her RSBI?
- What factors would influence your recommendation regarding weaning & extubation?



### Case 3 – Wean but Extubate to Adjunctive Device?

- ▶ A 69 YO ♂ on MV for 10 days for an COPD exacerbation. RSBI during a morning sedation holiday is 102 on + 6 PSV. SPO2 is 94% on FIO2 of 40% and PEEP of +8. The patient has an adequate cuff leak of 150 mls. Clinical status is otherwise stable. ENT is scheduled to assess for tracheostomy over the next 2 days.
- Is this patient potentially a candidate for weaning?
- If they successfully wean all morning on + 8 PSV, should extubation be considered?
- If extubation is considered, are there any special considerations regarding enhancing success?



# Case 4 - No Wean in the AM - No PM Weaning Assessment Warranted

- ▶ 47 YO ♂ chest trauma patient is mechanically ventilated. CXR reveal bilateral ground glass appearance, PO2 is 65 on 80% and PEEP of 14 (P:F = 78). PAW are 32 cm (low compliance).
- Should this patient be assessed for ability to wean?
- Should they be weaned and why/why not?
- Should they be re-assessed for ability to wean in the afternoon?
- What other therapies should be considered?



### Case 5 – Excessive Weaning & Diaphragmatic Fatigue

- ▶ A patient with marginal weaning parameters (e.g., RSBI = 102) has been weaning on + 10 PSV X 9 hours. Over the past 3 hours, his RR has been climbing into the low 30's, HR inc from 105 to 130 and he is diaphoretic, despite sx'ing, bronchodilators and other respiratory interventions.
- Pain and anxiety have been ruled out as the main cause of distress.
- What immediate actions should be taken?
- What are some potential considerations for weaning over the next few days?



### Case 6- Trach Collar Wean and Decruitment

- Patient with a spinal injury at C-4 and 5 is intermittently weaning on T/C during the day. Patient has repeatedly had episodes of hypoxemia after 4-6 hours of T/C. CXR shows signs of bi-basilar atelectasis which is unchanged over several days.
- What factors predispose this patient to hypoxemia and atelectasis?
- What recommendations might help this patient's weaning and overall respiratory status?



#### Take Home Messages



- SBT and weaning are important tools in optimizing vent-patient care.
- However, they involve interprofessional collaboration
   & communication.
- SBT & Weaning are resource dependent.
- No single method for weaning and liberation from ventilation is infallible and the data are mixed.
- However, some methods have stronger supportive evidence than others.
  - SBT Guidelines, RSBI, diaphragmatic issues, de-recruitment considerations.
- Use what evidence we have and stay tuned as more research emerges!



#### Selected Resources

- Schmidt, Girard, Kress, et al, Official Exec Summary of ATS...Guideline: Liberation from Mechanical Ventilation in Critically III Patients, 2017.
- Heuer, AJ. Clinical Assessment in Respiratory Care, ed 9, 2021.
- Kacmarek, Stoller, & Heuer, Egan's Fundamentals of Respiratory Care, ed 12th ed, 2021.
- Kallet, Zhuo, Yip, et al: Cochrane Systematic Rev. Respir Care. Jan;63(1):1-10, 2018.



# Thank You!!! Questions?



